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Abstract

Many mortality models, such as the Lee-Carter model (Lee and Carter 1992), have
unsatisfactory estimation in the case of small populations. Increasing population size is a
natural choice to stabilize the estimation, if we can find a larger reference population which
has similar mortality profile as the small population. Aggregating historical data of the small
populations is a fine candidate as the reference population. However, it is often not feasible in
practice and we need to rely on other reference populations. In this study, we want to explore
whether the graduation methods can be used if the mortality profile of small population differ
from that of reference population.

In order to explore when is the appropriate occasion to use graduation methods, we
create several mortality scenarios and similarity types between small and reference
populations. We propose combining the graduation methods and mortality models, either
graduating mortality rates first or applying mortality model first, and verify if they can
improve the model fit. We use computer simulation to check if the proposed approach has
better mortality estimation than the Lee-Carter model and the Li-Lee model (2005). We found
that the Li-Lee model always has smaller estimation errors than the Lee-Carter model, and

the proposed approach has smaller estimation errors than the Li-Lee model in most cases.
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1. Introduction

Since people are living longer, life planning for the elderly has become a popular issue
around the world. Among all topics, the study of the elderly’s mortality rates and health
receives a lot of attention. However, human life expectancy has been increasing rapidly, and
in many countries (especially those with small populations and a rapid increase in longevity),
data about the elderly have been limited in quantity and available period, which makes
modeling mortality rates of the elderly difficult. For example, the famous Lee-Carter model
(Lee and Carter 1992) does not fit well in the case of small populations (Booth et al., 2006)
and the estimates of age-related parameters ax and fx tend to be biased. Wang et al. (2018)
found that the bias is especially noticeable when the population size is 200,000 or less. For
the CBD model (Cairns et al., 2006), Chen et al. (2017) found that the uncertainty of
parameter estimation is related to the sample size.

The following example demonstrates the influence of small populations. We first use
Taiwan’s female mortality to derive the parameters of the Lee-Carter model. Suppose that the
mortality rates follow the Lee-Carter model and the population structure is the same as that of
the Taiwan female. We consider different population sizes, ranging from 10,000 to 5 million,
and then simulate the random numbers of deaths, and then we apply them to the Lee-Carter
model. To emphasize the influence of small populations, we only show the estimation results
for the cases of population sizes not more than 200,000. Figure 1 shows the average biases of
estimates of parameters ay and Sy via singular value decomposition. The biases of ay estimates
are especially noticeable and always larger than 0. In contrast, the biases of S, estimates can
be positive or negative and seem to be around 0 on average, when the sample size is larger
than 100,000. Note that the average biases are calculated based on 1,000 replications; the data

period is 1996-2015, and the age range is 0-99 in the format of five-year age groups (20

groups).
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Figure 1. Bias of Parameters’ Estimates of the Lee-Carter Model

The biased estimates in the case of small populations probably are the main reason why
many recent studies focus on modifying mortality models for small populations. Intuitively,
increasing the sample size is the most efficient way to stabilize the parameter estimation of
mortality models, and including the mortality data from neighboring areas (or areas with
similar mortality profiles) is a natural choice. For example, Li and Lee (2005) proposed
referencing the mortality data from populations with similar mortality improvements, namely,
the coherent Lee-Carter model, to reduce the estimation errors of Lee-Carter model. Ahcan et
al. (2014) suggested augmenting the size of small population by including the average
mortality from neighboring populations. Wang et al. (2018) proposed aggregating 10 to 20

years of historical data from the target population as the reference group. Of course, the
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Bayesian approach is another possibility for increasing the sample size, such as the Bayesian
modification of Lee-Carter model by Wisniowski et al. (2015). In a sense, most studies
consider increasing the sample size of small populations, but it is difficult to judge which
populations have mortality profiles similar to that of the target population.

Dealing with estimating mortality rates of small populations is not new in the insurance
industry, and actuaries often apply smoothing methods to reduce the fluctuations of age-
specific mortality rates in constructing life tables. In fact, the graduation methods originally
are designed to handle the problem of insufficient data, particularly for the elderly. Many
traditional graduation methods (e.g., moving weighted averages and the Whittaker method)
enlarge the sample size by including data from adjacent ages with similar mortality rates. If
the fluctuations of mortality rates are reduced at each age, then the estimation of mortality
model would be more stable as well. In other words, it is possible to apply the idea of
graduation to stabilize the estimation of mortality models.

Thus, to deal with the estimation of mortality models in the case of small populations,
we propose combining the graduation methods and mortality models (either graduate the
mortality rates first or apply the mortality model first) and verify if it can improve model fit.
In particular, we want to explore whether the graduation methods can be used if the mortality
profile of small population differ from that of the reference population. We use computer
simulation to check if the proposed approach has better mortality estimation than the Lee-
Carter model (1992) and the Li-Lee model (2005). However, unlike other studies of small
populations, we do not define the mortality measures for deciding which populations are
similar to the small population. Instead, we create several mortality scenarios and similarity

types between small and reference populations. Note that the mortality scenarios are similar

to those in Wang et al. (2012) and the similarity types are defined via m,, «, , and £, , which

X !

will be discussed in Section 4. We will introduce the graduation methods and mortality



models in the next two sections.

2. Methodology

The idea behind the proposed approach is similar to that of using graduation methods to
adjust irregular fluctuations in observed mortality rates. However, unlike the usual graduation
methods, such as the moving average, the proposed adjustment of mortality rates is based on
a reference population, similar to Bayesian graduation. Basically, we propose two graduation
methods: partial standard mortality ratio (SMR) and the Whittaker method. We will introduce
the proposed approach in this section and evaluate its performance in the next section.

The partial SMR (Lee 2003) is a modification of SMR, which is used to smooth
mortality rates of small populations via the information from a large population, referencing
the value of the SMR. The SMR, which is often used in epidemiology, is defined as follows:

24 2.4,

SMR =3

—_ X
deo > Pxmd’
X X

(2.1)

where dy and ey are the observed and expected numbers of deaths at age x for the small
population, Py is the population size of age x for the small population, and m is the central

death (or mortality) rate of age x from the reference population. The SMR can be treated as a
mortality index. If the SMR is larger (or smaller) than 1, then it usually indicates that the
small population has a higher (or lower) overall mortality rate than the reference population.
The numbers of age-specific deaths in the small population often are not many, and the
observed mortality rates fluctuate a lot and sometimes are even 0. The SMR can provide a
possible guideline to fine-tune these mortality rates. For the partial SMR, the graduated

mortality rates satisfy



d, xh?xlog(d, /e,)+(1~d, /Y d,)xlog(SMR)
d,xh?+(1-d,/>d,)

V, = U, xexp , (2.2)

or the weighted average between raw mortality rates and SMR, where h? is the estimate of

parameter h® for measuring the heterogeneity (in mortality rates) between the small and
reference populations, and u, is the mortality rate for age x in the reference population.

The idea behind the partial SMR is similar to a credibility-weighted estimate for
calculating the future premium (Klugman et al. 2012), where the estimate is a linear
combination of recent observed loss and related reference information. The Bayesian
graduation methods (e.g., Kimeldorf and Jones 1967) function in a similar format, and the
updated (or posterior) estimates are also a linear combination of new observations and past
experience (London 1985). The key is to choose appropriate weights and the proper reference

population. Of course, the reference population should have larger population size in order to

have smooth values of u’, .

To achieve satisfactory results, Lee (2003) suggests the weight of partial SMR:

> ((d, -, xSMR)? = Y"d, | )

h? = max
SMR?x Y ¢’

(2.3)

The larger h® is, the larger the difference in age-specific mortality rates (i.e., mortality

heterogeneity, or larger dissimilarity in shape between the age-specific mortality curve of the
small population and that of the larger population). When the number of deaths is smaller,

there will be greater weight from the large population, and the graduated mortality value

equals SMR xu, when the number of deaths is 0. Lee mentioned that using the weight
function h? in Equation (2.3) usually has smaller mean square error (MSE) in mortality

estimation. However, the derivation of h® is through some sort of approximations, and it



cannot guarantee to have the smallest MSE.
Alternatively, we can also use the Whittaker graduation method to stabilize the
mortality rates of a small population, with a modification similar to the partial SMR. First, we

calculate the age-specific ratio of mortality rates from the small population to those from the
reference population, or define s, =u, /u,, whereu, is the observed mortality rate of age x for

the small population. Next, we apply the Whittaker graduation to the mortality ratio s; via

minimizing the following objective function:
M =D w,(r, —r)"+hD ()2, (2.4)

where ry is the graduated mortality ratio, wy is the weight (or exposure) of age x, h is a

smoothing parameter, and A is the difference operator, or Af(x) = f(x + 1) — f(x). Finally, the
graduated mortality rates of small population are s, xu_ . The choice of parameter h is the

key, as well as the choice of reference population, in applying the Whittaker ratio (namely)
graduation.

Selecting the reference population is critical in applying the proposed graduation
methods. This is also the case for applying the coherent Lee-Carter model, and choosing the
appropriate group of coherent populations is important. In practice, selecting the populations
with similar mortality profiles is not easy, and a natural choice is the whole nation (or nearby
areas) if the small population is a subset of the nation. But the mortality differences within a
country can be huge, even for neighboring cities. For example, in Taiwan, the largest
difference in life expectancy between counties is more than 10 years (the Taipei City versus
Tai-tung County in the 2014 Taiwan Abridged Life Tables). It would be questionable to use
the population of Taipei City as the reference group for Tai-tung County. In the next section,
we will use computer simulation to evaluate the proposed approach, with emphasis on the

similarity between the small and reference populations.



3. Graduating Mortality Rates via the Reference Population

As mentioned previously, choosing the appropriate reference population is important.
However, instead of searching for the perfect reference population, we want to use the
similarity level between the small and reference populations to judge whether we should
adjust the mortality rates of the small population via the reference population. In this section,
we first evaluate the performance of graduation methods using various similarity levels. In
the next section, we will use the graduation to integrating the parameter estimation of the
Lee-Carter model.

Suppose that there are seven scenarios for the mortality ratio s, between the small and
reference populations, as shown in Figure 2. Various scenarios are designed to evaluate the
effect of different graduation methods. The three scenarios in the left panel indicate that the
mortality rates of the small and reference populations are similar, and we expect that the
partial SMR would be a good choice for graduation. In contrast, the other four scenarios in
the right panel assume that the mortality rates of the small and reference populations are

different. For these four cases, the partial SMR might not be a good choice.
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Figure 2. Seven Mortality Ratio Scenarios

We use a computer simulation to evaluate the performance of partial SMR and
Whittaker graduation. First, we use the mortality data of 1996-2015 Taiwanese female, with

age range 0-99 in the format of five-year age groups of 0-4, 5-9, 10-14, ..., 95-99 (20
groups), to obtain parameters («,, f,, andk,) of Lee-Carter model. Second, we adopt the

age structure of 1996-2015 Taiwanese female population as the underlying population and the
population sizes are 10,000, 20,000, ..., 2 million, 5 million. Third, we simulate the numbers
of deaths from Poisson distribution for both the small and reference populations under seven
mortality scenarios. Then, we calculated raw mortality rates and apply them into the
graduation methods, the Lee-Carter model, and the Li-Lee models. The preceding simulation
process is repeated for 1,000 times.

There are quite a lot of possible treatment combinations and we should use two
examples as a demonstration. Suppose the size of the small population is 100,000 or 200,000,
and the size of reference population is 2 million or 5 million. Also, the comparison criterion is

based on the mean absolute percentage error (MAPE):

~

n Y =Y,
MAPE =lz—x100%, (3.1)
n=z v,
where Y, and \f, are the observed and predicted values for observation i, i = 1, 2, ..., n.

According to Lewis (1982), a prediction with MAPE less than 10 percent is treated as highly
accurate, and a MAPE greater than 50 percent is considered inaccurate.

Since the simulation results are similar for the cases where the reference population is
larger than 2 million, we will only show the cases of 2 million. Tables 1 and 2 are the
simulation results of cases where the small population is 100,000 and 200,000, for 1,000

simulation replications. Other than raw data and two proposed graduation methods, we also



consider the case of Whittaker graduation to the observed mortality rates as a control group.
For the Whittaker ratio and Whittaker graduation methods, the parameter wy is the exposure
of age x, and the parameter h is average exposure of all ages.

As expected, the graduation methods generally have smaller MAPEs than those without
graduation (except for increasing and reverse V shape scenarios). For the first three scenarios,
in which the mortality rates of small and reference populations have the same proportion for
all ages, the SMR can provide a very good approximate estimate of this proportion. Thus,
Tablel and Table 2 shows the MAPEs of the partial SMR are much smaller than other
methods. Heuristically speaking, taking the results in Table 1 as a demonstration, it is like
treating the reference population as the small population when we apply the partial SMR, so

the MAPEs of the raw data are about 2 times of those for the partial SMR.

Table 1. MAPEs of Graduation Methods (100,000 vs. 2 Million)

;=08 | s,=1 | s,=12 | Increase | Decrease \% Rev-V

Raw 28.95% | 26.80% | 25.08% | 28.96% | 26.73% | 27.28% | 28.24%
Whittaker | 26.73% | 24.77% | 23.50% | 28.39% | 23.60% | 27.15% | 25.67%
W?::tti%ker 15.73% | 14.95% | 14.30% | 19.46% | 18.36% | 15.54% | 17.44%
F;al\r/tl'g 12.80% | 12.43% | 12.08% | 47.65% | 20.12% | 22.15% | 25.33%

Note: The cells with gray background are those with the smallest MAPEs.
Table 2. MAPEs of Graduation Methods (200,000 vs. 2 Million)

5,=0.8 s,=1 | s,=12 | Increase | Decrease \ Rev-V
Raw 21.42% | 19.69% | 18.34% | 21.54% | 19.52% | 19.99% | 20.92%
Whittaker | 21.79% | 20.54% | 19.59% | 23.03% | 19.64% | 23.66% | 20.27%
Wrr‘;ttti%ker 12.80% | 12.15% | 11.58% | 15.01% | 14.83% | 12.50% | 14.04%
F;al\r/tl'é" 11.58% | 11.20% | 10.87% | 43.10% | 17.40% | 16.99% | 21.77%

Note: The cells with gray background are those with the smallest MAPEs.

For the other four mortality scenarios, where the mortality rates of small and reference
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populations are not very similar, the MAPEs of the Whittaker ratio generally are the smallest.
It seems that the Whittaker ratio is more robust than the partial SMR and the graduation
results are not influenced much by different mortality scenarios. This probably can explain
why the Whittaker method is still a popular choice of graduation methods.

Of course, we can conduct exploratory data analysis (EDA) to evaluate if the mortality
rates of small and reference populations are similar. For example, the age-specific mortality
ratios in Figure 2 are one of the EDA tools we can use. We suggest using the partial SMR if
they look like the first three scenarios, but we are skeptical of using the partial SMR for the
last four scenarios. In fact, we experimented with using different values of mortality ratios for
the last four scenarios, such as changing the ratios of the increasing scenario from 0.5~1.5 to
(1 —a)~(1 +a) for 0 <a< 1. We found that the MAPEs of the partial SMR are smaller than
those of Whittaker ratio if a < 0.4. In other words, if the small and reference populations are
not very different, then the partial SMR is preferred. We should continue exploring whether

we can modify the stochastic mortality models via graduation methods in the next section.

4. Modification of the Lee-Carter Model

In this section, we continue the discussion of applying the graduation methods to
modify the Lee-Carter model. We first use the proposed approach to smooth the mortality
rates and then apply the graduated mortality rates to fit the Lee-Carter model. We assume
that the age-specific mortality rates of small and reference populations satisfy the Lee-Carter
model. In addition, three different mortality settings are applied to regulate the relationship
between the small and reference populations, via mortality ratio, a,, and 8,. The purpose
behind these settings is to explore the influence of similarity in the mortality rates and their
trend between the small and reference populations. For example, the mortality rates look
similar now but their improvement rates may not. This would cause mortality discrepancy

and possible bias in the parameter estimation.
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As for the proposed approach, we can either graduate raw mortality rates first and then
apply the mortality model, or apply the mortality model first and then graduate model-fitted
mortality rates. The graduation methods considered are the partial SMR and Whittaker ratio,
and the mortality models are the Lee-Carter and Li-Lee models. In addition to the Lee-Carter
and Li-Lee models, we also compare the proposed approach to the method of aggregate
historical data (20 years) of small population (Wang et al. 2018). We use computer
simulation to evaluate whether the proposed approach can improve the model fit. We only
use the case where the size of small population is 100,000 and that of reference population is
2 million as a demonstration, since there are quite a few treatment combinations (order of
mortality graduation, graduation methods, and mortality models). For example, for the case
of partial SMR + Li-Lee model, we first simulate numbers of deaths for small and reference
populations. Then, we use the partial SMR method to smooth the mortality rates of small
population, using the information of mortality rates from the reference population. Finally,
we apply the Li-Lee Carter model to the graduated mortality rates of small population and
observed mortality rates of reference population.

Again, we use the age structure of Taiwanese female population as the underlying
population. The model comparison is based on the MAPE as well, based on 1,000 simulation
runs. Because there are many treatment combinations, we only show the results of
approaches for graduating raw mortality rates first and then applying the mortality model.
The results of approaches for applying the mortality model first and then graduating model-

fitted mortality rates are in the Appendix. We first consider the case of mortality ratio

R
X !

s, =m:/m?, where m: and m? are the central mortality rates of small and reference

populations. The MAPEs of the proposed methods and the reference group are shown in
Table 3 and Table A-1 in the Appendix. Note that the last rows of Table 3 have two different

reference populations. The reason is that there are only one set (or “single year”) of mortality
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data for the reference population after data aggregation, and thus the Li-Lee model cannot be
used. As an alternative, we need to reply on other reference population after applying
graduation methods. Similar rule applies to the last two rows of Table A-2. As expected, the
MAPEs of Lee-Carter and Li-Lee models are obviously smaller than those of raw
observations, since the mortality rates satisfy the Lee-Carter model. In addition, the MAPEs
of Li-Lee model are always smaller than those of Lee-Carter model. It is interesting to note

that the Li-Lee model is a fine modification to the Lee-

Table 3. MAPEs of Graduation and Lee-Carter Model (Mortality Ratio: s, = m}/m¥)

Reference 0.8 1 1.2 Incr. Decr. V Rev-V
Raw 2895 2680 2508 2896 2673 27.28 28.24
Lee-Carter 1648 1462 1361 1845 1491 1468 17.95
Li-Lee omil. 1394 1274 1205 1577 11.99 1324 1422
Partial SMR+ 0 492 469 446 3949 2386 2059 2262
Lee-Carter
Whittaker Ratio o o 908 872 859 1367 1656 1073 11.33
+ Lee-Carter
Partl'_ai'_fggR * 2mil. 506 479 459 3950 2378 2057 2272
Whittaker Ratio ., 865 834 816 1211 1648 1074 10.33
+Li-Lee
Partial SMR +

Lee-Carter Aggregate 1047  9.79 9.22 1051 957 9.69 10.27

Whittaker Ratio

+ Lee-Carter Aggregate  8.97 8.62 8.51 8.84 8.99 9.19 858

Partial SMR +  Aggregate g5 950 g74 1005 881 913  9.68

Li-Lee [ 2 mil.
Whittaker Ratio - Aggregate 591 1907 953 1134 993 1032 10.77
+Li-Lee [ 2 mil.

Note: Cells with gray background are those with the smaller MAPE than the Li-Lee model.

Carter model, even though the reference population has quite different mortality rates. A

possible explanation is that the relationship between the mortality rates of small and reference

population are fixed in this setting, i.e., two populations have same g, and x,, and it is like

fitting the Li-Lee model using both the small and reference populations.
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The MAPEs of graduation methods vary quite a lot. For the first three mortality
scenarios, using the partial SMR to graduate first and then apply the Lee-Carter model has the
smallest MAPEs, but the MAPEs for the last four scenarios are almost the largest. In contrast,
applying the mortality model (Lee-Carter or Li-Lee model) first and using Whittaker ratio
graduation outperforms the Lee-Carter model. The treatment combination Whittaker ratio +
Li-Lee model has the smallest MAPEs for the last four mortality scenarios, with noticeable
improvements (at least 30%) over the Lee-Carter and Li-Lee models in all mortality
scenarios. It seems that the graduation methods can improve the mortality estimates of small

populations if they are chosen properly.

Table 4. MAPEs of Graduation and Lee-Carter Model (Different ay:s = ca. /o))

Reference 0.8 1 1.2 Incr. Decr. V Rev-V
Raw 6601 2676 1533 31747 17.66 27.85 17352
Lee-Carter 5405 1463 826 31148 1025 1456 16831
Li-Lee omil. 5024 1277 751 30414 820 13.06 161.25
Partial SMR+ o o 5707 guaa 1972 M983 g3, 9621 41176
Lee-Carter 1
Whittaker Ratio o o 4091 903 20.80 297.34 3662 31.90 178.11
+ Lee-Carter
Partial SMR+ o o 5704 928 1064 M98 935 gs61 41151
Li-Lee 4
Whittaker Ratio o 3995 ge0 2044 29273 3683 30.85 175.71
+Li-Lee
Partial SMR +
AN Aggregate 1666 981 682 2480 716 979 1756

Whittaker Ratio

+ Lee-Carter Aggregate  20.64 10.69 6.44 27.33 6.30 1054 20.01

Partial SMR+ Aggregate 1584 921 669 2461 7.00 955  17.49

Li-Lee /2 mil.
Whittaker Ratio - Aggregate 190 1917 639 2739 731 1091 19.89
+Li-Lee /2 mil.

Note: Cells with gray background are those with the smaller MAPE than the Li-Lee model

Following the same concept, we also set up seven mortality scenarios for the

parameter «, to describe the relationship between the small and reference populations. Let

14



s, =a; la, where o and « are the intercept parameters of the Lee-Carter model for the

small and reference populations. The MAPEs of various model estimations are shown in

Table 4 and Table A-2 in the Appendix, and the results for the setting of different o, (same

B, and ki) are very different, comparing to those in Table 3. We can see that the MAPE

values of all methods (except the aggregate methods) are especially larger for the scenarios of

Increasing and Rev-V. It seems that the discrepancy in the intercept «, causes noticeable

influence for the parameter estimation of the small population. This suggests that, if the
mortality profiles of small and reference populations differ a lot, we should apply the
mortality models and graduation methods with care.

The simulation for the case of different Sy (same ax and ;) is conducted similarly and

the results are shown in Table 5 and Table A-3 in the Appendix. Lets, = 5/ 3, where S;

and BT are the age-related slope parameters of the Lee-Carter model for the small and

reference populations. Again, the Li-Lee model always has smaller MAPEs than the Lee-
Carter model in all seven py scenarios. It seems that even if the small and reference
populations have quite different g4, using the idea of coherent group to increase the
population size still can reduce the estimation error of mortality rates for the small
populations. It indicates that increasing the population size is a feasible approach, even
though the populations included do not have a mortality profile identical to that of the small
population.

Unlike the case of different ay, the proposed approaches have fine performance in all
scenarios. The partial SMR + Lee-Carter model has the smallest MAPEs, and it outperforms
the Lee-Carter and Li-Lee models in all cases, significantly reducing the estimation errors.
Other methods of applying the graduation method first also have smaller MAPEs than those

of the Lee-Carter and Li-Lee models, but the error reduction is not as significant. This is very
15



similar to those in Table 3 and very different than those in Table 4. Intuitively, like in the
regression analysis, we think that the slope parameter Sy should play a more important role
than the intercept parameter ay, but the MAPEs of computer simulation show different

information.

Table 5. MAPEs of Graduation and Lee-Carter Model (Different gx: s, = 55/ 55)

Reference 0.8 1 1.2 Incr. Decr. Vv Rev-V
Raw 26.83 26.72 26.81 26.76 26.78 26.80 26.79
Lee-Carter 1493 1469 1412 1528 1395 1420 1467
Li-Lee 2 mil. 1299 1275 1330 13.32 1334 13.38 13.30
Partial SMR + )
2 mil. 4.69 4.68 4.85 6.48 6.25 5.65 5.81
Lee-Carter
Whittaker Ratio -, o 899 ggg 875 922 880 874 890

+ Lee-Carter

Partial SMR =+ 2mil/2 536 479 532 650 636 596 6.2

Li-Lee mil.

Whittaker Ratio  2mil/2 g2, g4 890 937 903 898 917
+Li-Lee mil.

Partial SMR +

el MR T Aggregate 903 976 1064 942 1210 1136 952

Whittaker Ratio

+ Lee-Carter Aggregate 10.86 10.78 10.65 1051 1088 10.83 1041

Partial SMR +  Aggregate ¢ .2 947 1021 914 1141 1069 9.8

Li-Lee /2 mil.
Whittaker Ratio - Aggregate 1410 1913 1073 1052 1083 1079  10.42
+Li-Lee /2 mil.

Note: Cells with gray background are those with the smaller MAPE than the Li-Lee model.

In summary, we found that the mortality graduation can improve the mortality
estimation of the Lee-Carter model (and Li-Lee model as well), if proper graduation methods
are selected. For example, the method Whittaker ratio + Li-Lee always has smaller MAPEs
than the Lee-Carter and Li-Lee models in all simulation cases. However, the selection of
treatment combination (i.e., graduation vs. mortality model) depends on the characteristics of
mortality rates. We suggest conducting exploratory data analysis for the mortality rates, and
the information, such as mortality ratios, can provide a useful guideline to choose the
appropriate graduation methods.

16



5. Conclusion and Discussion

Living longer is a common phenomenon of human beings in the 21st century, and the
study of mortality rates is a popular research topic in many fields, such as demography and
actuarial science. The mortality models are a common tool for modeling the mortality rates,
but the model estimation tends to be distorted by small sample size. In addition to larger
variance, parameters’ estimates for the small populations often are biased. Quite a lot of
modifications have been proposed to deal with the case of a small population. Three
examples are the coherent Lee-Carter model by Li and Lee (2005), the Bayesian approach by
Cairns et al. (2011), and the SAINT model by Jarner and Kryger (2011). Most of these
modifications use mortality information from another population(s) as a reference to improve
the model fitting.

Including another population as a reference is like increasing the sample size, and this
probably is the most intuitive and effective way to deal with the model estimation for small
populations. The idea of increasing sample size has been used by actuaries to construct life
tables as well, and many graduation methods can be treated as increasing sample size from
those with a similar mortality profile. In this study, we adapt the idea of graduation and
propose a modification of the Lee-Carter model, also with information from a reference
population. Two types of graduation methods are used in this study: the partial SMR (Lee
2003) and Whittaker ratio.

We consider three settings of relationship between small and reference populations:

s,=m;/m’,s =alla), ands, =B/ A%, and use computer simulation to evaluate the

proposed approach. In general, the partial SMR modification has smaller estimation errors
(with respect to MAPE) than the Lee-Carter and Li-Lee models, if the small and reference

populations have similar mortality profiles. When the mortality rates of small and reference
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populations are not similar, the Whittaker ratio is a possible alternative choice of graduation
methods. We think the graduation methods are a feasible approach for dealing with small
populations and can effectively reduce the estimation errors of the Lee-Carter model.

We should continue exploring the graduation methods and use them to modify the
mortality models. However, we only consider various settings of age-related parameters oy
and px for the Lee-Carter model and do not consider the time-related parameter ;. There
would be problems if the small and reference populations have different functional forms of
parameter x; (e.g., quadratic for the small population and linear for the reference population).
Of course, the interactive effects might also exist if two or three parameters (ox, Sx and ;) are
different, and this can distort or even ruin the effect of graduation.

Also, there can be more than one reference population, and of course, it is impossible
that these populations are perfectly homogeneous in terms of mortality rates. It is more
realistic to expect that some populations and the small population have similar mortality rates
at younger ages, while other populations and the small population are similar at older ages.
Then the concept of variable selection can be applied. We may develop similarity measures
and use them to judge whether a reference population should be included. Further, it would
be even better (but more difficult) if the selection of appropriate reference populations is age
dependent.

Modifying the graduation methods for mortality models (other than the Lee-Carter
mode) is also a possible direction for future study. If the parameters of mortality models are
additive, such as the age-period-cohort model, we can use the graduation methods to adjust
the parameter estimation one parameter at a time. However, if the parameters are not additive,
the situation is expected to be more complicated. For example, the cohort modification to the
Lee-Carter model by Renshaw and Haberman (2006) contains one component of age with
time and one component of age with cohort. These two components are not linearly

dependent and can cause problems of adjusting the age parameters associated with time and
18



cohort.
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Appendix: Errors of First Applying Mortality Model and then Graduation

Table A-1. MAPEs of Lee-Carter Model & Graduation (Mortality Ratio:s, = m®/m?)

Reference 0.8 1 1.2 Incr. Decr. V Rev-V
Raw 28.95 26.80 25.08 28.96 26.73 27.28 28.24
Lee-Carter 16.48 14.62 13.61 18.45 14.91 14.68 17.95
Li-Lee 2 mil. 13.94 12.74 12.05 15.77 11.99 13.24 14.22
Lee-Carter + .
Partial SMR 2 mil. 15.07 14.46 13.96 33.58 32.46 22.70 25.55
Lee-Carter + .
Whittaker Ratio 2 mil. 13.49 12.42 11.90 16.16 15.22 12.77 15.25
"""esel\;ga”'a' omil. 1307 1258 1212 3129 3122 2102 23.92
Li-Lee + .
Whittaker Ratio 2 mil. 10.29 9.44 9.05 12.86 11.80 10.21 11.22
Lee-Carter +
Partial SMR  Adgregate 1350 1250 1203 1391 1299 1238 14.26
Lee-Carter +
Whittaker Ratio  A\d9regate 1436 1273 1195 1585 1298 1276 1541
Li-Lee + Partial 2 mil./
SMR Aggregate 10.38 9.78 9.44 10.89 9.47 9.96 10.24
Li-Lee + 2 mil./
Whittaker Ratio  Aggregate 10.95 9.78 9.15 12.40 9.18 10.07 11.07

Note: Cells with gray background are those with smaller MAPE than the Li-Lee model.
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Table A-2. MAPEs of Lee-Carter Model & Graduation (Different ay:s = o /o))
Reference 0.8 1 1.2 Incr. Decr. Vv Rev-V
Raw 66.01 26.76 15.33 31747 1766 27.85 173.52
Lee-Carter 5405 14.63 8.26 31148 10.25 1456 168.31
Li-Lee 2 mil. 50.24  12.77 751 304.14 8.20 13.06 161.25
Lee-Carter + 2 mil 62.10 1445 2139 12241 1035 87.38 464.70
Partial SMR ' 0
Lee-Carter + 2 mil 43.83 1233 20.09 301.41 38.42 31.60 180.15
Whittaker Ratio '
Li-Lee + Partial . 60.16 1257 20.57 12049 9.17 85.38 452.22
2 mil.
SMR 3
Li-Lee + 5 mil 42.27 9.44 1896 29359 37.39 30.78 176.28
Whittaker Ratio '
Lee-Carter + A t 19.25 12.59 8.55 2843 1048 13.10 22.10
Partial SMR ggregate
Lee-Carter + A t 2421  12.77 7.49 31.35 9.03 1293 24.21
Whittaker Ratio ggregate
Li-Lee + Partial 2 mil./ 15.36 9.15 6.84 24.69 7.80 9.93 17.67
SMR Aggregate
Li-Lee + 2 mil./ 21.46 9.86 6.00 27.84 6.19 10.39 20.18
Whittaker Ratio  Aggregate

Note: Cells with gray background are those with the smaller MAPE than the Li-Lee model.
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Table A-3. MAPEs of Lee-Carter Model &Graduation (Different g : s, = 55/ 55)

Reference 0.8 1 1.2 Incr. Decr. Vv Rev-V
Raw 26.83 26.72 26.81 26.76 26.78 26.80 26.79
Lee-Carter 1493 1469 1412 1528 1395 1420 14.67
Li-Lee 2 mil. 1299 1275 1330 1332 1334 1338 13.30
Lee-Carter + 2 mil 10.66 10.97 10.81 12.07 11.04 11.03 11.47
Partial SMR '
Lee-Carter + 2 mil 1235 1250 1214 13.06 1195 1206 12.57
Whittaker Ratio '
Li-Lee + Partial . 7.61 7.41 8.12 8.44 8.48 8.36 8.27
2 mil.
SMR
Li-Lee + 2 mil 9.79 9.47 10.03 10.30 10.22 10.12 10.14
Whittaker Ratio '
Lee-Carter + A t 11.67 1261 13.15 1257 13.76 1347 12.30
Partial SMR ggregate
Lee-Carter + A t 1267 1285 1252 1328 1226 1248 12.78
Whittaker Ratio ggregate
Li-Lee + Partial 2 mil./ 8.39 9.11 10.58 8.87 11.13  10.73 9.02
SMR Aggregate
Li-Lee + 2 mil./ 10.07 9.84 1043 1058 1051 1049 10.46
Whittaker Ratio  Aggregate

Note: Cells with gray background are those with the smaller MAPE than the Li-Lee model.
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